Structure, Dynamics, and Function in the Major Light-Harvesting Complex of Photosystem II

نویسندگان

  • Gabriela S. Schlau-Cohen
  • Graham R. Fleming
چکیده

In natural light-harvesting systems, pigment-protein complexes (PPC) convert sunlight to chemical energywith near unity quantum efficiency. PPCs exhibit emergent properties that cannot be simply extrapolated from knowledge of their component parts. In this Perspective, we examine the design principles of PPCs, focussing on the major light-harvesting complex of Photosystem II (LHCII), the most abundant PPC in green plants. Studies using two-dimensional electronic spectroscopy (2DES) provide an incisive tool to probe the electronic, energetic, and spatial landscapes that enable the efficiency observed in photosynthetic light-harvesting. Using the information about energy transfer pathways, quantum effects, and excited state geometry contained within 2D spectra, the excited state properties can be linked back to the molecular structure. This understanding of the structure-function relationships of natural systems constitutes a step towards a blueprint for the construction of artificial light-harvesting devices that can reproduce the efficacy of natural systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structure and dynamics of photosystem II light-harvesting complex revealed by high-resolution FTICR mass spectrometric proteome analysis.

Structure and dynamics of membrane-bound light-harvesting pigment-protein complexes (LHCs), which collect and transmit light energy for photosynthesis and thereby play an essential role in the regulation of photosynthesis and photoprotection, were identified and characterized using high-resolution Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS). LHCs from photosystem II (...

متن کامل

Dynamics of cytochrome bf complex of photosynthesis apparatus

Photosynthesis is a process under which, the radiative energy is converted into the chemical one. Compared to the man-made devices, the photosynthesis apparatus is much more efficient. This high efficiency comes from its elaborate structure, very fast transition rates and a complex electron and proton transfer chain among the subunits of the apparatus. Its main subunits (Photosystem I (PSI), bf...

متن کامل

Loss of Albino3 leads to the specific depletion of the light-harvesting system.

The chloroplast Albino3 (Alb3) protein is a chloroplast homolog of the mitochondrial Oxa1p and YidC proteins of Escherichia coli, which are essential components for integrating membrane proteins. In vitro studies in vascular plants have revealed that Alb3 is required for the integration of the light-harvesting complex protein into the thylakoid membrane. Here, we show that the gene affected in ...

متن کامل

Heptameric association of light-harvesting complex II trimers in partially solubilized photosystem II membranes.

We report a structural characterization by electron microscopy and image analysis of a supramolecular complex consisting of seven trimeric light-harvesting complex II proteins. The complex was readily observed in partially-solubilized Tris-washed photosystem II membranes from spinach but was also found to occur, with a low frequency, in oxygen-evolving photosystem II membranes. The structure re...

متن کامل

Optimization of light harvesting and photoprotection: molecular mechanisms and physiological consequences.

The distinctive lateral organization of the protein complexes in the thylakoid membrane investigated by Jan Anderson and co-workers is dependent on the balance of various attractive and repulsive forces. Modulation of these forces allows critical physiological regulation of photosynthesis that provides efficient light-harvesting in limiting light but dissipation of excess potentially damaging r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012